Features

- Very High Transmitting Frequency Accuracy Compared to SAW Solutions (Enables Receivers at Lower Bandwidth than with SAW Resonators)
- Lower Cost than the Usual Discrete Solutions Using SAW and Transistors
- Supply Voltage 2.2 V to 4.0 V in the Temperature Range of -40°C to 85°C
- XTO Output for Clocking the Microcontroller, Thereby Together with the ATAR090 or ATAR890 Results in the Optimum System Cost-effectiveness
- One-chip Solution with Minimum External Circuity
- Very Small SSO16 Package, Pitch 0.635, 150 mil
- “Single-ended Open-collector” Output (Same Antennas Can Be Used as in Discrete Solutions, Simpler Adaptation of Magnetic Loop Antennas)
- ESD Protection According to MIL-STD.883 (4 KV HBM) Except Pins XTO1/ 2, ANT and LF

Electrostatic sensitive device.
Observe precautions for handling.

Description

The U2745B is a PLL transmitter IC which has been especially developed for the demands of RF low-cost data transmission systems at data rates up to 20 kBaud.

The transmitting frequency range is 310 MHz to 440 MHz. It can be used in ASK systems. The main applications of the U2745B are in the areas of outside temperature metering, socket control, garage door opener, consumption metering, light/fan or air-condition control, jalousies, wireless keyboard and various other consumer market applications.
Figure 1. System Block Diagram

Figure 2. Block Diagram
Pin Configuration

Figure 3. Pinning SSO16

Pin Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Symbol</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASK</td>
<td>Modulation input ASK</td>
</tr>
<tr>
<td>2</td>
<td>EN</td>
<td>Enable input</td>
</tr>
<tr>
<td>3</td>
<td>VCC</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>4</td>
<td>CLK</td>
<td>Clock output</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>LFVCC</td>
<td>Supply voltage VCO</td>
</tr>
<tr>
<td>7</td>
<td>LFGND</td>
<td>VCO ground</td>
</tr>
<tr>
<td>8</td>
<td>LF</td>
<td>Circuit PLL loop</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>Not connected</td>
</tr>
<tr>
<td>10</td>
<td>XTO1</td>
<td>Connection for crystal</td>
</tr>
<tr>
<td>11</td>
<td>PWRGND2</td>
<td>Power GND2</td>
</tr>
<tr>
<td>12</td>
<td>PWRGND1</td>
<td>Power GND1</td>
</tr>
<tr>
<td>13</td>
<td>ANT</td>
<td>RF output</td>
</tr>
<tr>
<td>14</td>
<td>PWRVCC</td>
<td>Supply voltage power amplifier</td>
</tr>
<tr>
<td>15</td>
<td>PWRSET</td>
<td>Applied to VCC</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>
General Description

The fully integrated VCO and the “single-ended open-collector” output allow particularly simple, low-cost RF miniature transmitters to be assembled. The single-ended output enables a considerably simplified adaptation of both a magnetic loop antenna of any form or a \( \frac{1}{4} \) antenna. This is because the load impedance must not be balanced as would be the case with a differential output.

The XTO’s frequency can be selected to be either 13.56 MHz or 9.844 MHz (USA). At these frequencies, crystals have a very fast start-up time (< 1.5 ms), whereby a wait time of 5 to 10 ms is required until the transmitter IC is locked. This means that the processor does not need to poll a lock detect output.

Functional Description

ASK Transmission

The U2745B is activated by EN = V_S. V_{ASK} must remain 0 V for 5 ms, then the output power can be modulated by means of pin ASK. V_{EN} remains = V_S during the transmission of the message. The ASK input activates the power amplifier and the PLL.

Take-over of the Clock Pulse in the Microcontroller

The clock of the crystal oscillator can be used for clocking the microcontroller. The ATAR090 and ATAR890 have the special feature of starting with an integrated RC oscillator to switch on the U2745B with \( V_{EN} = V_S \). 5 ms later, the 3.39-MHz clock frequency is present, so that the message can be sent with crystal accuracy.

Application Circuit

The following component values are recommendations for a typical application. \( C_4, C_5, \) and \( C_6 \) are block capacitors. The values of these capacitors depend on the board layout. \( C_4 = 1 \text{nF}, C_5 = 1 \text{nF}, \) and \( C_6 = 22 \text{nF} \) are typically used here. For \( C_5 \), the impedance between \( f = 100 \text{MHz} \) and \( f = 1 \text{GHz} \) should be as low as possible.

\( C_{\text{Loop1}} \) and \( C_{\text{Loop2}} \) are selected so that the antenna oscillates in resonance and the adaptation to the appropriate impedance transformation is possible.

\( L_{\text{Feed}} \) is an inductor for the antenna’s DC current supply. A typical value is \( L_{\text{Feed}} = 220 \text{nH} \). \( L_{\text{Feed}} \) can be either printed on the PC board or be a discrete component.

Output Power Measurement

The following output network (see Figure 4 on page 5) can be used for output power evaluation, the exact values of \( L_{10} \) and \( C_{10} \) are dependent on the layout.

\( L_{10} \) and \( C_{10} \) form the transformation network to adopt the output impedance of the IC to 50 \( \Omega \). The following table shows the values for an output power of 2 mW and an \( R_{\text{PWRSET}} = 1.2 \text{k\Omega} \).

<table>
<thead>
<tr>
<th>( f/\text{MHz} )</th>
<th>( C_{10}/\text{pF} )</th>
<th>( L_{10}/\text{nH} )</th>
<th>( Z_{\text{Load, op}}/\Omega )</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>2.7</td>
<td>56</td>
<td>260 + j330</td>
</tr>
<tr>
<td>433.92</td>
<td>1.8</td>
<td>33</td>
<td>185 + j268</td>
</tr>
</tbody>
</table>

Table 1. Transformation Network
Figure 4. Measurement Output Network

Figure 5. Application Circuit
Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>( V_S )</td>
<td>6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>( P_{\text{tot}} )</td>
<td>250</td>
<td></td>
<td>mW</td>
</tr>
<tr>
<td>Junction temperature</td>
<td>( T_J )</td>
<td>150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>( T_{\text{stg}} )</td>
<td>-55</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>( T_{\text{amb}} )</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction ambient</td>
<td>( R_{\text{thJA}} )</td>
<td>180</td>
<td>K/W</td>
</tr>
</tbody>
</table>

Electrical Characteristics

All parameters are referred to GND (pin 5), \( V_S = 3 \text{ V} \), \( T_{\text{amb}} = 25^\circ \text{C} \), unless otherwise specified.

The possible operating ranges refer to different circuit conditions: \( V_S = 2.2 \text{ V} \) to 4.0 \text{ V} at \( T_{\text{amb}} = -40^\circ \text{C} \) to +85°C

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current (power down)</td>
<td>( V_{\text{ASK}}, V_{\text{FSK}} \leq 0.3 \text{ V}, V_S &lt; 3.6 \text{ V} )</td>
<td>( IS_{\text{off}} )</td>
<td>2</td>
<td>10</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>Supply current (power up, output OFF)</td>
<td>( V_{\text{ASK}} = \text{GND}, V_{\text{EN}} = V_S, V_S = 3 \text{ V} )</td>
<td>( IS_{\text{on}} )</td>
<td>4.7</td>
<td>6.2</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Supply current (power up, output ON)</td>
<td>( V_{\text{ASK}} = V_S, V_S = 3 \text{ V}, R_{\text{PWRSET}} = 1.2 \text{ kΩ} )</td>
<td>( IS_{\text{transmit}} )</td>
<td>10</td>
<td>12.5</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Output power

\( V_S = 3 \text{ V}, T_{\text{amb}} = 25^\circ \text{C}, f = 433.92 \text{ MHz} \)

\( R_{\text{PWRSET}} = 1.2 \text{ kΩ} \)

\( P_{\text{Ref}} = 1 \) \text{ dBm} \( \Delta P_{\text{Ref}} = 1.5 \) \text{ dB}

Maximum peak output antenna voltage

at \( P_{\text{out}} = 2.0 \text{ mW} \), the load impedance must be selected to meet the \( V_{\text{out}} \) maximum requirement, the supply current is not dependent on the load impedance tolerance

\( V_{\text{outmax}} = V_S \cdot 0.7 \text{ V} \)

Spurious emission

\( f_0 \approx (n \times f_{\text{PC}}) \) where \( f_{\text{PC}} = 6.78 \text{ MHz} \)

Load capacitance at \( \text{CLK} \leq 3 \text{ pF} \)

\( f = 230 \text{ MHz} \) to 470 MHz

\( f < 230 \text{ MHz}, f > 470 \text{ MHz} \)

\( E_m = -40 \text{ dBC} \)

Oscillator frequency XTO

Crystal frequency = 13.56 MHz

\( f_{\text{XTO}} = 13.56 \) \text{ MHz} \( 30 \text{ ppm} \)

\( 13.56 + 30 \text{ ppm} \) \text{ MHz}

Loop bandwidth

For best LO noise

\( B_{\text{Loop}} = 100 \text{ kHz} \)

Phase noise PLL

Referring to the phase comparator

\( f_{\text{PC}} = 6.78 \text{ MHz} \)

\( PN_{\text{PLL}} = -111 \) \text{ dBC/Hz} \( -105 \) \text{ dBC/Hz}

Phase noise VCO

at 1 MHz

\( PN_{\text{VCO}} = -90 \) \text{ dBC/Hz} \( -122 \) \text{ dBC/Hz}

at 36 MHz
Electrical Characteristics (Continued)

All parameters are referred to GND (pin 5), \( V_S = 3 \text{ V} \), \( T_{\text{amb}} = 25^\circ \text{C} \), unless otherwise specified.
The possible operating ranges refer to different circuit conditions: \( V_S = 2.2 \text{ V to 4.0 V} \) at \( T_{\text{amb}} = -40^\circ \text{C to } +85^\circ \text{C} \).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range of the VCO</td>
<td>( f_{\text{VCO}} )</td>
<td>310</td>
<td>440</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock output (CMOS microcontroller compatible)</td>
<td>( \text{Clkout} )</td>
<td>( f_{\text{out}}/128 )</td>
<td>MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load capacitance at CLK</td>
<td>( C_{\text{CLK}} )</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Series resonance R of the crystal</td>
<td>( f_{\text{XTO}} = 13.56 \text{ MHz} )</td>
<td>( R_{\text{s}} )</td>
<td>80</td>
<td>100</td>
<td>( \Omega )</td>
<td></td>
</tr>
<tr>
<td>- ( f_{\text{XTO}} = 9.84 \text{ MHz} )</td>
<td>( R_{\text{s}} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASK modulation frequency rate</td>
<td>Duty cycle of the modulation signal = 50%</td>
<td>( f_{\text{modASK}} )</td>
<td>0</td>
<td>20</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>CLK output</td>
<td>( V_{\text{CLK}} = 0.2 \times V_S )</td>
<td>( I_{\text{ol}} )</td>
<td>150</td>
<td>( \mu \text{A} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Output current Low</td>
<td>( V_{\text{CLK}} = 0.3 \times V_S )</td>
<td>( I_{\text{ol}} )</td>
<td>200</td>
<td>( \mu \text{A} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Output current High</td>
<td>( V_{\text{CLK}} = 0.8 \times V_S )</td>
<td>( I_{\text{oh}} )</td>
<td>-150</td>
<td>( \mu \text{A} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Output current High</td>
<td>( V_{\text{CLK}} = 0.7 \times V_S )</td>
<td>( I_{\text{oh}} )</td>
<td>-200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASK input</td>
<td>( V_{\text{ASKl}} )</td>
<td>1.7</td>
<td>( V )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low level input voltage</td>
<td>( V_{\text{ASKh}} )</td>
<td>140</td>
<td>( V )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High level input voltage</td>
<td>( I_{\text{ASKh}} )</td>
<td>1.7</td>
<td>( \mu \text{A} )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Input current High</td>
<td>( V_{\text{EN}} )</td>
<td>0.3</td>
<td>( V )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable ASK</td>
<td>( V_{\text{FSKl}} )</td>
<td>140</td>
<td>( V )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low level input voltage</td>
<td>( V_{\text{FSKh}} )</td>
<td>1.7</td>
<td>( \mu \text{A} )</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High level input voltage</td>
<td>( I_{\text{FSKh}} )</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ordering Information

<table>
<thead>
<tr>
<th>Extended Type Number</th>
<th>Package</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2745B-MFB</td>
<td>SSO16</td>
<td>Tube</td>
</tr>
<tr>
<td>U2745B-MFBG3</td>
<td>SSO16</td>
<td>Taped and reeled</td>
</tr>
</tbody>
</table>

Package Information

Drawing refers to following types: SSO16
Package acc. JEDEC MO 137 AB
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: (1)408) 441-0311
Fax: (1)408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5550

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: (1)408) 441-0311
Fax: (1)408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: (1)408) 441-0311
Fax: (1)408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Roussel Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: (719) 576-3300
Fax: (719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.
Atmel® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be the trademarks of others.